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Attendez le début de l’examen avant de tourner la page.

Ce document est imprimé recto-verso, il contient 40 pages.

Ne pas dégrafer.

• Aucun document n’est autorisé.

• Une calculette simple (sans display graphique) est autorisée.

• Pour les questions à choix multiples:

– entourez la bonne réponse (sans justification) et utilisez un stylo à encre noire ou
bleue foncée; en cas d’erreur effacez proprement avec du correcteur blanc.

– Une réponse incorrecte compte 0 mais n’entraine pas de point négatif.

• Pour les questions ouvertes:

– Répondre dans l’espace dédié.

– Vous pouvez utiliser un crayon à papier à condition d’écrire lisiblement;

– Si vous utilisez des résultats du cours, citez-les explicitement.

– Sauf mention explicite du contraire, on a le droit d’utiliser un résultat d’un autre
exercice ou d’une question précédente du même exercice pour répondre à une
question même si on ne l’a pas démontré.

• Si une question est erronée, l’enseignant se réserve le droit de l’annuler.

• L’examen est LONG mais il n’est pas nécessaire de le faire correctement intégralement
pour obtenir la note maximale.
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Formulaire concernant les déterminants

Soit K un corps de caractéristique ∕= 2, d 󰃍 1, V un K-EV de dimension d et B = {e1, · · · , ed} une
base de V .
Pour n 󰃍 1, on note Mult(n)(V ;K) l’espace vectoriel des formes multilinéaires en n variables sur V à
valeurs dans K. On note

Alt(n)(V ;K) ⊂ Mult(n)(V ;K)

le sous-espace vectoriel des formes multilinéaires en n variables qui sont alternées.
On rappelle que pour n = d l’espace Alt(d)(V ;K) est de dimension 1 (ainsi toute forme multilinéaire
alternée en d variables est proportionelle a toute autre forme multilinéaire alternée en d variables
non-nulle). On note detB l’unique forme multilinéaire alternée telle que

detB(e1, · · · , ed) = 1.

Soit (v1, · · · , vd) ∈ V d et vi =
󰁓d

j=1 xijej. On a alors

detB(v1, · · · , vd) =
󰁛

σ∈Sd

sign(σ)x1σ(1). · · · .xdσ(d) =
󰁛

σ∈Sd

sign(σ)xσ(1)1. · · · .xσ(d)d

Pour ϕ : V 󰀁→ V une application lineaire, on définit son déterminant det(ϕ) ∈ K comme l’unique
scalaire vérifiant l’une des égalités équivalentes suivantes:

detB(ϕ(e1), · · · ,ϕ(ed)) = det(ϕ)detB(e1, · · · , ed) = det(ϕ).

∀(v1, · · · , vd) ∈ V d, detB(ϕ(v1), · · · ,ϕ(vd)) = det(ϕ)detB(v1, · · · , vd)

et si
matB(ϕ) = (mij)i,j󰃑d = M

est la matrice de ϕ dans la base B, alors

det(ϕ) = det(M) =
󰁛

σ∈Sd

sign(σ)m1σ(1). · · · .mdσ(d) =
󰁛

σ∈Sd

sign(σ)mσ(1)1. · · · .mσ(d)d.

On a par ailleurs pour ϕ,ψ ∈ End(V ) et M,N ∈ Md(K) et λ ∈ K

det(ϕ ◦ ψ) = det(ϕ) det(ψ), det(M.N) = det(M) det(N)

det(λϕ) = λd det(ϕ), det(λ.M) = λd det(M)

det(IdV ) = 1 = det(Idd)

Par ailleurs si M ∈ Md(K) se décompose en blocs de matrices carrées

M =

󰀕
M1 ∗
0 M2

󰀖
ou bien M =

󰀕
M1 0

M2

󰀖
, M1 ∈ Md1(K), M2 ∈ Md2(K), d = d1 + d2,

on a
det(M) = det(M1) det(M2).
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Exercice 1 (Questions de cours et QCM). .

1. Donner une propriété (plusieurs sont possibles) qui détermine une forme multilinéaire alternée
en n variables parmi les formes multilinéaires (on demande une propriété pour "alternée" pas
pour "multilinéaire").

2. Soit G un groupe, h, k ∈ G deux éléments et G′ = {g ∈ G, g.h.g−1 = k}. Alors G′ n’est pas
toujours un sous-groupe de G.

Vrai Faux

(c’est un groupe ssi h = k)

3. Dans un anneau non-nul, intègre et fini, un élément non-nul est toujours inversible.

Vrai Faux

4. Une application linéaire ϕ : Rm 󰀁→ Rn avec m 󰃑 n est toujours injective .

Vrai Faux

5. Soit B =

󰀳

󰁃
0 0 1
0 1 0
1 0 0

󰀴

󰁄 ∈ M3(R) et M ∈ M3(R) vérifiant B.tM.B.M + B.M = B; alors M est

inversible.

Vrai Faux

6. Soit K un corps et C =

󰀳

󰁃
1 2 3
1 4 9
1 8 27

󰀴

󰁄 ∈ M3(K) alors C est inversible sauf en caractéristiques 2

et 3.

Vrai Faux
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Exercice 2. Soit K un corps et

A =

󰀳

󰁅󰁅󰁃

0 1 3 0 1
0 1 3 −3 −5
1 0 3 0 −4
0 −2 −6 0 −2

󰀴

󰁆󰁆󰁄 ∈ M4×5(K).

1. Déterminer la valeur de rang(A) en fonction de la caractéristique de K.

2. On suppose que car(K) = 0 et on voit A comme la matrice (dans les bases canoniques) d’une
application linéaire de K5 vers K4. Donner une base de ker(A) : on écrira les vecteurs de la
base du noyau sous forme de vecteurs lignes.

3. Donner une représentation cartésienne de ImA avec un nombre minimum d’équations (repondre
"0 = 0" si ImA = K4).

Réponses aux questions de l’Exercice 2 (répondre à l’intérieur de la boite)
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Exercice 3. [Interpolation de Lagrange] Le problème l’interpolation de Lagrange est le suivant:

Etant donné x0, · · · , xn ∈ R, n + 1 nombres réels distincts, et n + 1 valeurs p0, · · · , pn ∈ R (pas
forcement distinctes) peut-on trouver un polynôme P (X) ∈ R[X] tel que

∀i = 0, · · · , n, P (xi) = pi ?

Pour résoudre cette question on considère l’espace

R[X]󰃑n = {a0 + a1X + · · ·+ anX
n, a0, · · · , an ∈ R}

des polynômes de degré 󰃑 n. C’est un R-espace vectoriel de dimension n+1 dont une base est donnée
par la famille des monômes unitaires de degré 󰃑 n

Mn := {1 = X0, X = X1, · · · , Xn}.

1. Montrer que les deux points suivants sont équivalents

(a) Pour tout p0, · · · , pn ∈ R il existe un unique polynôme P (X) ∈ R[X]󰃑n tel que

∀i = 0, · · · , n, P (xi) = pi.

(b) detV (x0, · · · , xn) ∕= 0 avec V (x0, · · · , xn) ∈ Mn+1(R) la matrice dite "de Vandermonde"

V (x0, · · · , xn) =

󰀳

󰁅󰁅󰁅󰁃

1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1
...

...
... · · · ...

1 xn x2
n · · · xn

n

󰀴

󰁆󰁆󰁆󰁄
.

pour cela on pourra considérer l’application linéaire d’évaluation en 󰂓x = (x0, · · · , xn)

ev󰂓x : P (X) ∈ R[X]󰃑n 󰀁→ (P (x0), P (x1), · · · , P (xn)) ∈ Rn+1;

on pourra montrer qu’elle est linéaire et calculer sa matrice matB′,B(ev󰂓x) dans des bases con-
venables de R[X]󰃑n et de Rn+1.

2. Pour calculer ce déterminant on introduit la famille suivante de polynômes (interpolateurs de
Lagrange)

Ln := {Pi(X), i = 0, · · · , n} ⊂ R[X]󰃑n

avec

Pi(X) :=
n󰁜

j=0
j ∕=i

(X − xj).

Montrer que la famille Ln est libre (on pourra évaluer une combinaison linéaire de ces polynômes
en des points biens choisis de R) et montrer que c’est une base de R[X]󰃑n.

3. Montrer que la matrice de ev󰂓x relativement à Ln et à la base canonique de Rn+1 est diagonale
et montrer qu’elle est inversible en calculant son déterminant.

4. Donner une relation entre cette matrice et la matrice de Vandermonde V (x0, · · · , xn) et montrer
que

det(V (x0, · · · , xn)) ∕= 0.
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Exercice 4. Soit K un corps et

SL2(K) = {M =

󰀕
a b
c d

󰀖
∈ GL2(K), detM = ad− bc = 1} ⊂ GL2(K)

le groupe spécial linéaire des matrices 2× 2 de déterminant 1. On rappelle que comme

det : GL2(K) 󰀁→ K×

est un morphisme de groupes et SL2(K) est un sous-groupe distingué. On va étudier le structure de
ce groupe.
Pour cela on a recours aux matrices de transformations élémentaires: pour i ∕= j ∈ {1, 2} et µ ∈ K×,
on pose

Cij,µ = Id2 + µ.Eij (4.1)

où Ei′j′ , i′, j′ ∈ {1, 2} désignent les matrices élémentaires et Id2 est la matrice identité.

1. Montrer que les Cij,µ, i ∕= j ∈ {1, 2} appartiennent a SL2(K) et calculer leur inverse.

2. Soit M ∈ M2(K) une matrice. Rappelez (sans preuve) a quelle opération sur M correspond la
multiplication a gauche M 󰀁→ Cij,µ.M pour i ∕= j?

3. On va montrer que quand i ∕= j parcourent {1, 2} et µ parcourt K× les matrices Cij,µ engendrent
SL2(K) . Soit

M =

󰀕
a b
c d

󰀖
∈ SL2(K).

On veut donc montrer que M peut s’écrire comme un produit de matrices de la forme (4.1)
(pour i ∕= j). Montrer que quitte à remplacer M par sa multipliée à gauche par une (des)
matrice(s) Cij,µ convenable (ou par la matrice identité), on peut supposer succéssivement que

(a) c ∕= 0,

(b) puis que a = 1,

(c) et enfin que M =

󰀕
1 b
0 1

󰀖
et conclure.

Ainsi vous avez montré que SL2(K) est engendré par les matrices de la forme (4.1).

4. Soient A et B deux matrices inversibles, leur commutateur est défini comme étant la matrice

[A,B] := A.B.A−1.B−1.

Soit α, µ ∈ K×. Calculer le commutateur

[

󰀕
α 0
0 α−1

󰀖
,

󰀕
1 µ
0 1

󰀖
] ∈ SL2(K)

5. On suppose que K× possède au moins 3 éléments. Montrer qu’alors toute matrice Cij,µ (i ∕= j)
est le commutateur de deux matrices de SL2(K).

6. Montrer que SL2(K) est engendré par l’ensemble des commutateurs de ses éléments,

SL2(K) = 〈[A,B], A,B ∈ SL2(K)〉 =: [SL2(K), SL2(K)].

On dit que SL2(K) est un groupe parfait.

Remarque. On peut montrer que SL2(F2) et SL2(F3) ne sont pas parfaits. En revanche si d 󰃍 3, on
peut montrer que SLd(K) est toujours parfait quelquesoit la taille de K.
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Exercice 5. Soit K un corps de caractéristique zero.
Pour n 󰃍 2, on note Mult(n)(V ;K) l’espace vectoriel des formes multilinéaires en n variables sur V à
valeurs dans K. On note

Alt(n)(V ;K) ⊂ Mult(n)(V ;K)

le sous-espace vectoriel des formes multilinéaires en n variables qui sont alternées. On va montrer
que le résultat énoncé en cours: si n 󰃑 d alors

dimK(Alt
(n)(V ;K)) = Cn

d =
d!

n!(d− n)!

(ie. le coefficient du binôme ou ce qui sera plus intéressant pour nous, le nombre de sous-ensembles
de cardinal n dans un ensemble de cardinal d). Ici n! = 1.2. · · · .n est la factorielle usuelle.
On fixe B = {e1, · · · , ed} une base de V et on note

B∗ = {e∗1, · · · , e∗d} ⊂ V ∗

la base duale de l’espace des formes linéaires: on rappelle que e∗i est définie par ses valeurs sur la base
B par

e∗i (ej) = δi=j.

Etant donné j1, · · · , jn ∈ {1, · · · , d}, n entiers compris entre 1 et d, on notera

󰂓j = (j1, · · · , jn) ∈ {1, · · · , d}n

le n-uplet (ordonné) correspondant. Pour 󰂓j comme ci-dessus, on notera

e∗󰂓j = e∗j1 ⊗ · · ·⊗ e∗jn ∈ Mult(n)(V ;K)∗

la forme multilinéaire définie par

e∗󰂓j : (v1, · · · , vn) ∈ V n 󰀁→ e∗j1(v1).e
∗
j2
(v2). · · · .e∗jn(vn) ∈ K.

On rappelle également qu’on a une action du groupe symétrique à n éléments sur l’espace des formes
multilinéaires Sn ↷ Mult(n)(V ;K), par permutation des variables: pour σ ∈ Sn et Λ ∈ Mult(n)(V ;K)
on définit σ.Λ par

σ.Λ(v1, · · · , vn) = Λ(vσ(1), · · · , vσ(n))

(σ.• est un automorphisme linéaire de Mult(n)).
On en déduit une application linéaire de symétrisation

•sign : Λ ∈ Mult(n)(V ;K) 󰀁→ Λsign =
󰁛

σ∈Sn

sign(σ)σ.Λ ∈ Alt(n)(V ;K)

qui transforme un forme multilinéaire en une forme alternée (comme d’habitude sign(σ) désigne la
signature de la permutation σ).

1. (Question de cours) Donner (sans preuve) une base ainsi que la dimension de l’espace Mult(n)(V ;K).

2. Montrer que pour τ ∈ Sn et Λ ∈ Mult(n)(V ;K) on a

(τ.Λ)sign = sign(τ)Λsign

3. Montrer que si Λ est une forme alternée alors

Λsign = n!Λ

et en déduire que l’application linéaire •sign a pour image exactement

Im(•sign) = Alt(n)(V ;K).
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4. En déduire que la famille de formes multilinéaires alternées

{(e∗󰂓j)sign, 󰂓j ∈ {1, · · · , d}n} ⊂ Alt(n)(V ;K)

est une famille géneratrice de Alt(n)(V ;K).

5. Soit 󰂓j = (j1, · · · , jn) ∈ {1, · · · , d}n et τ ∈ Sn, montrer que

τ.e∗󰂓j = e∗jτ−1(1)
⊗ · · ·⊗ e∗jτ−1(n)

.

6. En déduire que si 󰂓j = (j1, · · · , jn) possède deux indices égaux (il existe i ∕= i′ tel que ji = ji′)
alors

(e∗󰂓j)sign = 0;

pour fixer les idées on pourra traiter uniquement le cas j1 = j2 et utiliser les questions 2 et 5
avec un τ convenable.

7. Soit 󰂓j = (j1, · · · , jn) avec les ji tous distincts. Montrer que

(e∗󰂓j)sign ∕= 0

(on pourra utiliser la Question 1).

8. Montrer que la famille de formes alternées associée au n-uplets distincts et ordonnés

{(e∗󰂓j)sign, 󰂓j = (j1, · · · , jn), 1 󰃑 j1 < j2 < · · · < jn 󰃑 d} ⊂ Alt(n)(V ;K)

est base de Alt(n)(V ;K). On remarquera pour cela que si 󰂓j′ = (j′1, · · · , j′n) est obtenu à partir
d’un tel uplet 󰂓j par permutation des coordonnees (ie. il existe τ ∈ Sn telle que j′i = jτ(i)) alors

(e∗󰂓j′)sign = ±(e∗󰂓j)sign.

Réponses aux questions de l’Exercice 5 (répondre à l’intérieur de la boite)
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