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Attendez le début de ’examen avant de tourner la page.
Ce document est imprimé recto-verso, il contient 40 pages.

Ne pas dégrafer.

Aucun document n’est autorisé.

Une calculette simple (sans display graphique) est autorisée.

Pour les questions a choix multiples:

— entourez la bonne réponse (sans justification) et utilisez un stylo & encre noire ou
bleue foncée; en cas d’erreur effacez proprement avec du correcteur blanc.

— Une réponse incorrecte compte 0 mais n’entraine pas de point négatif.

Pour les questions ouvertes:

— Répondre dans I'espace dédié.
— Vous pouvez utiliser un crayon a papier & condition d’écrire lisiblement;

— Si vous utilisez des résultats du cours, citez-les explicitement.

Sauf mention explicite du contraire, on a le droit d’utiliser un résultat d’un autre
exercice ou d’une question précédente du méme exercice pour répondre a une
question méme si on ne 'a pas démontré.

e Si une question est erronée, ’enseignant se réserve le droit de I’annuler.

e [’examen est LONG mais il n’est pas nécessaire de le faire correctement intégralement
pour obtenir la note maximale.




Formulaire concernant les déterminants

Soit K un corps de caractéristique # 2, d > 1, V un K-EV de dimension d et B = {e;,--- ,e;} une
base de V.
Pour n > 1, on note Mult!™ (V; K) 'espace vectoriel des formes multilinéaires en n variables sur V a
valeurs dans K. On note

Alt™(V; K) € Mult™(V; K)

le sous-espace vectoriel des formes multilinéaires en n variables qui sont alternées.

On rappelle que pour n = d 'espace Alt(d)(V; K) est de dimension 1 (ainsi toute forme multilinéaire
alternée en d variables est proportionelle a toute autre forme multilinéaire alternée en d variables
non-nulle). On note dets 'unique forme multilinéaire alternée telle que

detg(er, - ,eq) = 1.
Soit (v1,--- ,v4) € V4 et v; = Z?:1 z;;e;. On a alors
detg(vy, -+ ,vq) = Z Sign(o)T1s(1)-** * Tdo(d) = Z Sign(o)To(y1- -+ + -To(d)d
€6y c€Gy

Pour ¢ : V +— V une application lineaire, on définit son déterminant det(p) € K comme 'unique
scalaire vérifiant I'une des égalités équivalentes suivantes:

detz(p(er), -, p(eq)) = det(p)detps(er, - -, eq) = det(ep).

Y(vy, - ,vq) € VY, detp(p(vy), -+, p(vg)) = det(p)det(vy, - - -, vq)
et si
matg(p) = (mi;)ij<a = M
est la matrice de ¢ dans la base A, alors

det(p) = det(M) = Z sign(o)misay. -+ Mag(a) = Z sign(o)me(y1- -+ Mo(a)a-

ceSy ceSy

On a par ailleurs pour ¢,1 € End(V) et M, N € My(K) et A € K
det(p o 9) = det(p) det(v)), det(M.N) = det(M) det(NV)

det(A\p) = M det (), det(\.M) = A\ det(M)
det(Idy) = 1 = det(Id,)

Par ailleurs si M € My(K) se décompose en blocs de matrices carrées

M = My = ou bien M = M, 0 , My € My, (K), My € Mg,(K), d=dy+ da,
0 M, M, 1 ’

on a

det(M) = det(M;) det(Ms).



Exercice 1 (Questions de cours et QCM). .

1. Donner une propriété (plusieurs sont possibles) qui détermine une forme multilinéaire alternée
en n variables parmi les formes multilinéaires (on demande une propriété pour "alternée" pas
pour "multilinéaire").

2. Soit G un groupe, h,k € G deux éléments et G' = {g € G, g.h.g7' = k}. Alors G’ n’est pas
toujours un sous-groupe de G.

Vrai Faux

(c’est un groupe ssi h = k)
3. Dans un anneau non-nul, intégre et fini, un élément non-nul est toujours inversible.

Vrai Faux

4. Une application linéaire ¢ : R™ +— R™ avec m < n est toujours injective .

Vrai Faux
001
5. Soit B= [0 1 0] € M3(R) et M € M3(R) vérifiant B."M.B.M + B.M = B; alors M est
100
inversible.
Vrai Faux
1 2 3
6. Soit K uncorpset C'= |1 4 9 | € M3(K) alors C est inversible sauf en caractéristiques 2
1 8 27
et 3.
Vrai Faux



Exercice 2. Soit K un corps et

01 3 0 1
0 1 3 -3 =5

A=11 0 3 0 —af€Mes)
0 -2 =6 0 —2

1. Déterminer la valeur de rang(A) en fonction de la caractéristique de K.

2. On suppose que car(K) = 0 et on voit A comme la matrice (dans les bases canoniques) d’une
application linéaire de K° vers K*. Donner une base de ker(A) : on écrira les vecteurs de la
base du noyau sous forme de vecteurs lignes.

3. Donner une représentation cartésienne de Im A avec un nombre minimum d’équations (repondre

"0 =0"siImA=K").

Réponses auz questions de I’Exercice 2 (répondre a l'intérieur de la boite)



Réponses auzx questions de I’Ezercice 2 (répondre a l'intérieur de la boite)




Réponses auzx questions de I’Ezercice 2 (répondre a l'intérieur de la boite)




Réponses auzx questions de I’Ezercice 2 (répondre a l'intérieur de la boite)




Réponses auzx questions de I’Ezercice 2 (répondre a l'intérieur de la boite)




Exercice 3. [Interpolation de Lagrange| Le probléme 'interpolation de Lagrange est le suivant:

FEtant donné xg,--- ,x, € R, n+ 1 nombres réels distincts, et n + 1 valeurs po,--- ,pp, € R (pas
forcement distinctes) peut-on trouver un polynome P(X) € R[X] tel que

Pour résoudre cette question on considére I’espace
R[X]gn = {CLO+G1X—|—"' +a‘an7 ag, "+ ,0p € R}

des polynoémes de degré < n. C’est un R-espace vectoriel de dimension n+ 1 dont une base est donnée
par la famille des mondmes unitaires de degré < n

M, ={1=X"X=X"... X"}L
1. Montrer que les deux points suivants sont équivalents
(a) Pour tout pg,--- ,p, € R il existe un unique polyndéme P(X) € R[X], tel que
Vi=0,---,n, Plx;) = p;.

(b) det V(zg,---,x,) # 0 avec V(xg, -+ ,x,) € M,:1(R) la matrice dite "de Vandermonde"

2 n

1 zy zj T

1z 22 z

‘/($0, axn):: :

2 n

1 z, z xy
our cela on pourra considérer 'application linéaire d’évaluation en © = (zg, - , @
05 yn

evz i P(X) € R[X]<n > (P(w0), P(x1),- -+, P(z,)) € R™™;

on pourra montrer qu’elle est linéaire et calculer sa matrice matg »(evz) dans des bases con-
venables de R[X],, et de R™"!,

2. Pour calculer ce déterminant on introduit la famille suivante de polynémes (interpolateurs de
Lagrange)
L, ={P(X), i=0,--- ,n} CR[X],

avec
n

P(X) = [](X =),
§=0
J#i
Montrer que la famille £,, est libre (on pourra évaluer une combinaison linéaire de ces polynémes
en des points biens choisis de R) et montrer que c¢’est une base de R[X]<,.

3. Montrer que la matrice de evy relativement a £, et & la base canonique de R™™! est diagonale
et montrer qu’elle est inversible en calculant son déterminant.

4. Donner une relation entre cette matrice et la matrice de Vandermonde V' (zg, - - - , x,,) et montrer
que
det(V(zg,- -+ ,x,)) # 0.
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Exercice 4. Soit K un corps et

SLy(K) = {M = (i Z) € GLy(K), det M = ad — be = 1} € GLy(K)

le groupe spécial linéaire des matrices 2 x 2 de déterminant 1. On rappelle que comme

det : GLy(K) — K~

est un morphisme de groupes et SLy(K) est un sous-groupe distingué. On va étudier le structure de
ce groupe.

Pour cela on a recours aux matrices de transformations élémentaires: pour i # j € {1,2} et p € K*,
on pose

Cij,,u = Idg + /JJEZJ (41)

ou By, 7,7 € {1,2} désignent les matrices élémentaires et Id, est la matrice identité.

1.

2.

Montrer que les C; ., i # j € {1,2} appartiennent a SLy(K) et calculer leur inverse.

Soit M € M,(K) une matrice. Rappelez (sans preuve) a quelle opération sur M correspond la
multiplication a gauche M — Cj; ,.M pour i # j?

On va montrer que quand i # j parcourent {1, 2} et o parcourt K les matrices Cj; , engendrent

SLy(K) . Soit
a b
M = (C d) € SLy(K).

On veut donc montrer que M peut s’écrire comme un produit de matrices de la forme (4.1)
(pour i # j). Montrer que quitte a remplacer M par sa multipliée & gauche par une (des)
matrice(s) Cj;,, convenable (ou par la matrice identité), on peut supposer succéssivement que

(a) c#0,
(b) puis que a =1,

(c) et enfin que M = ((1) 11)) et conclure.

Ainsi vous avez montré que SLy(K) est engendré par les matrices de la forme (4.1).

Soient A et B deux matrices inversibles, leur commutateur est défini comme étant la matrice

[A,B] := AB.A'.B™ .

Soit a, p € K*. Calculer le commutateur

[(3‘ a91>,<(1) /f>]€SL2(K)

On suppose que K* posseéde au moins 3 éléments. Montrer qu’alors toute matrice Cj; , (i # j)
est le commutateur de deux matrices de SLy(K).

. Montrer que SLy(K) est engendré par ’ensemble des commutateurs de ses éléments,

SLy(K) = ([A, B], A, B € SLy(K)) =: [SLa(K), SLy(K)].

On dit que SLy(K) est un groupe parfait.

Remarque. On peut montrer que SLy(Fs) et SLy(F3) ne sont pas parfaits. En revanche si d > 3, on
peut montrer que SLy(K) est toujours parfait quelquesoit la taille de K.
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Exercice 5. Soit K un corps de caractéristique zero.
Pour n > 2, on note Mult™ (V; K) 'espace vectoriel des formes multilinéaires en n variables sur V a
valeurs dans K. On note

ALt (V; K) € Mult™(V; K)

le sous-espace vectoriel des formes multilinéaires en n variables qui sont alternées. On va montrer
que le résultat énoncé en cours: si n < d alors

d!
: ) (y/- G —
dimg (A" (V; K)) =Cf = ld =)
(ie. le coefficient du bindme ou ce qui sera plus intéressant pour nous, le nombre de sous-ensembles
de cardinal n dans un ensemble de cardinal d). Ici n! = 1.2.--- .n est la factorielle usuelle.
On fixe = {ey,--- ,e4} une base de V' et on note

HB={ey,--- ey C VT

la base duale de I’espace des formes linéaires: on rappelle que e} est définie par ses valeurs sur la base
P par
e;(e;) = di—;

Etant donné j;,--- ,j, € {1,--- ,d}, n entiers compris entre 1 et d, on notera
j: (jla"' 7]n) € {17 7d}n
le n-uplet (ordonné) correspondant. Pour 7 comme ci-dessus, on notera
la forme multilinéaire définie par
e (v, un) € V" > €] (v1).€],(v2). -+ €] (vn) € K.

On rappelle également qu on a une action du groupe symétrique a n éléments sur ’espace des formes
multilinéaires &,, ~ Mult™ (V; K), par permutation des variables: pour o € &, et A € Mult™(V; K)
on définit . A par

oAy, vn) = Moy, -+ 5 Vo(n))

(0.8 est un automorphisme linéaire de Mult™).
On en déduit une application linéaire de symétrisation

0ien 1 A € Mult™ (V; K) 5 Agpn = Z sign(o)o.A € Alt™(V; K)

ceG,

qui transforme un forme multilinéaire en une forme alternée (comme d’habitude sign(o) désigne la
signature de la permutation o).

1. (Question de cours) Donner (sans preuve) une base ainsi que la dimension de Pespace Mult™ (V; K).

2. Montrer que pour 7 € &, et A € Mult™ (V; K) on a
(T-A)sign = sign(7) Asign
3. Montrer que si A est une forme alternée alors
Agign = n!A
et en déduire que 'application linéaire eg,, a pour image exactement
Im (o) = Alt™(V; K).
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4. En déduire que la famille de formes multilinéaires alternées
(), T € 11,7+, d}"} C ARV K)
est une famille géneratrice de Alt"™ (V; K).
5. Soit = (j1, -+, jn) € {1,--- ,d}" et T € &, montrer que

* * *
T.€> =€ e el .
J Jr=1(1) ® ® Jr=1(n)

6. En déduire que si j = (ji,-- -, jn) posséde deux indices égaux (il existe i # i’ tel que j; = ji)
alors
(€%)sign = 0;
pour fixer les idées on pourra traiter uniquement le cas j; = j5 et utiliser les questions 2 et 5
avec un 7 convenable.

7. Soit j = (J1,-++ ,Jn) avec les j; tous distincts. Montrer que
(e})sign #0
(on pourra utiliser la Question 1).
8. Montrer que la famille de formes alternées associée au n-uplets distincts et ordonnés

—

{(e}(’)sign; j = (jl,' .. 7]'”), 1 < jl < j2 < e & jn < d} C Alt(n)(v7 K)

est base de Alt™ (V; K). On remarquera pour cela que si j = (g1, -+ ,J5) est obtenu a partir
d'un tel uplet j par permutation des coordonnees (ie. il existe 7 € &,, telle que j; = j,(;)) alors

(e;‘-<‘1 )sign == <e§'>sign .
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